Certified Global Research Member
Isomar fd.webp Wcrc 57.webp
Key Questions Answered
  • Global Market Outlook
  • In-depth analysis of global and regional trends
  • Analyze and identify the major players in the market, their market share, key developments, etc.
  • To understand the capability of the major players based on products offered, financials, and strategies.
  • Identify disrupting products, companies, and trends.
  • To identify opportunities in the market.
  • Analyze the key challenges in the market.
  • Analyze the regional penetration of players, products, and services in the market.
  • Comparison of major players’ financial performance.
  • Evaluate strategies adopted by major players.
  • Recommendations
Why Choose Market Research Future?
  • Vigorous research methodologies for specific market.
  • Knowledge partners across the globe
  • Large network of partner consultants.
  • Ever-increasing/ Escalating data base with quarterly monitoring of various markets
  • Trusted by fortune 500 companies/startups/ universities/organizations
  • Large database of 5000+ markets reports.
  • Effective and prompt pre- and post-sales support.

NIR Raman Spectroscopy Market Share

ID: MRFR//9420-CR | 127 Pages | Author: Kinjoll Dey| August 2022

The Creatinine test marketplace plays a critical position in healthcare, supplying valuable insights into kidney function. As competition intensifies, organizations adopt various marketplace percentage positioning techniques to take advantage of an aggressive part. Companies' awareness of product differentiation to face out inside the crowded Creatinine test market. Innovations along with consumer-friendly test kits, quicker consequences, and integration with virtual fitness systems beautify the overall value proposition, attracting healthcare professionals and consumers. A key strategy involves balancing first-rate and affordability. Some organizations target cost management, offering competitive charges for standard Creatinine tests. In contrast, others position themselves as top-class companies, emphasizing advanced accuracy and reliability, attractive to clients who prioritize precision over fee.
Staying at the vanguard of technological improvements is vital. Companies invest in research and improvement to introduce present-day technology, together with point-of-care trying out devices and remote tracking solutions. Recognizing the various wishes of healthcare providers, some companies tailor their Creatinine test solutions to particular scientific settings. Customized applications for hospitals, clinics, and number-one care facilities cater to the unique necessities of each section, fostering stronger relationships with key stakeholders. Effective advertising and marketing techniques contribute drastically to market positioning. Companies invest in comprehensive advertising and marketing campaigns to construct logo recognition, educate clients, and spotlight the advantages of their Creatinine test products. Building a sturdy brand identification helps in developing purchaser loyalty and consideration.
Adhering to stringent regulatory standards is paramount within the healthcare enterprise. Companies emphasize compliance with regulatory necessities and spend money on quality warranty measures to construct a recognition for reliability and accuracy. Education plays a pivotal function in marketplace positioning. Companies provoke educational applications and schooling sessions for healthcare experts to ensure proper utilization of their Creatinine test merchandise. This not only effectively fosters patron loyalty but also enhances the general efficacy of the checking-out technique.
Exceptional customer service is a cornerstone for maintaining market proportion. Companies' attention to imparting efficient customer service, including technical help and schooling aid, sparks off problem resolution. A fantastic patron experience contributes drastically to emblem loyalty and superb phrase-of-mouth referrals. Constant vigilance in competitor sports is vital. Companies frequently examine the strategies of key competitors, adapting and refining their processes accordingly. This proactive approach ensures that market gamers stay agile and attentive to changing dynamics within the Creatinine test market.

NIR and Raman Spectroscopy Market Overview

The market is developing due to the increase in the prevalence of chronic diseases, growing demand for Process Analytical Technology (PAT) tools, and technological advancements in NIR and Raman spectroscopy. Moreover, the rising demand for cloud-based spectroscopy will provide growth opportunities for the market in the future. However, the shortage of skilled and experienced professionals might hamper the market's growth in the forecast period. The NIR and Raman spectroscopy market is expected to reach USD 3.93 Billion by 2032 and register a CAGR of 11.7% during the forecast period of 2023 to 2032.

NIR and Raman Spectroscopy Market

NIR and Raman Spectroscopy Market COVID-19 IMPACT

COVID-19 significantly disrupted the NIR and Raman spectroscopy industry in 2020, as the production and supply chain of spectroscopic instruments have been restricted due to the lockdowns. However, scientists are increasingly using Raman spectroscopy to screen for COVID-19 has resulted in the increasing adoption of spectroscopy products, which in turn will help the NIR and Raman spectroscopy market grow steadily. For instance, Northern Arizona University (US) research team is trying to develop new technology for SARS-CoV-2 using single-molecule surface-enhanced Raman spectroscopy (SM-SERS).

NIR and Raman Spectroscopy Market Dynamics


  • Increasing prevalence of chronic diseases

A disease that persists for a long time is known as a chronic disease. According to the Centre for Diseases Control and Prevention in 2019, the prevalence of chronic diseases in adults was around 60% globally, and it is reportedly much higher among elderly people. Near-infrared (NIR) spectroscopy is a simple, fast, portable, noninvasive, and inexpensive method for functional diagnosis and therapeutic monitoring of cancer and other chronic diseases. It is based on differences in endogenous chromophores between cancer and normal tissues using either oxy-hemoglobin or deoxy-hemoglobin, lipid or water bands, or a combination of two or more of these as diagnostic markers. These marker bands are used to diagnose several cancers, such as colorectal cancer and others.

  • Growing demand for Process Analytical Technology (PAT) Tools

  • Technological advancements in NIR and Raman Spectroscopy


  • Shortage of skilled and experienced professionals

The limited availability of skilled and experienced professionals such as clinical & research personnel, lab professionals, nutritionists, agronomists, and others adversely affect the growth of the global NIR and Raman spectroscopy market. In addition, the lack of training programs for lab professionals and the limited availability of scholarship and research funds are resulting in fewer admissions to the undergraduate and postgraduate laboratory science courses than required. Moreover, retiring skilled operators without being replaced by a new generation creates a significant shortage of specialists.


  • Rising demand for cloud-based spectroscopy

Cloud computing for scientific applications, particularly scientific workflows, is progressively increasing in popularity. In laboratories, cloud-based technologies and integrated spectroscopy analysis tools are becoming more popular due to the cloud-based model's accessibility and scalability, pay-as-you-go concept, lower infrastructure costs, improved data sharing with security to its users, and hassle-free data access. Accessibility allows researchers may examine, peak-pick, and control spectrometers on different operating systems. Scalability enables researchers to store the data in the cloud and increase the storage as per their research requirements. Most importantly, it provides security to researchers to secure the data using various cloud-based security platforms. These technologies can connect the hardware, provide access to the most up-to-date information, and provide deeper insights into data faster and more accurately.

NIR and Raman Spectroscopy Market Value Chain Analysis

The global NIR and Raman spectroscopy market is growing steadily and is expected to upsurge in the future. This is due to the increasing prevalence of chronic diseases and the technological advancements in NIR and Raman spectroscopy. The value chain analysis for the global NIR and Raman spectroscopy market comprises four major components that start with the research and product development, manufacturing, distribution & sales, and post-sales monitoring.

NIR and Raman Spectroscopy Market Segment

NIR and Raman Spectroscopy Market By Product

  • Near-infrared spectroscopy

Near-infrared spectroscopy is a form of non-invasive imaging that applies near-infrared radiation (wavelengths 780 nm to 3,000 nm) to chemicals or biological subjects to measure differential absorption. Cognitive psychology research can measure tissue oxygenation in the blood, including blood flow changes in the brain cortex. The advantages of near-infrared spectroscopy like cost-effectiveness, the capability to examine irregular surfaces, requires little or no sample preparation, and can also be used to analyze multiple constituents in a single scan, making it a highly flexible form of analysis

  • Scanning

Near-infrared spectroscopy (NIRS) is a non-invasive optical imaging technique used to monitor tissue oxygen status. In the brain, NIRS can be used to examine cerebral blood flow (CBF) and the local hemodynamic response during neural activity. The characteristics of NIR allow the fast and non-destructive analytical technique to be analyzed as a process analytical technology (PAT). Moreover, recent instrumental developments open the perspectives of numerous applications in the NIR imaging area.

  • Fourier-transform

Fourier Transform Infrared (FTIR) spectroscopy is an analytical methodology used in industry and academic laboratories to understand the structure of individual molecules and the composition of molecular mixtures. FTIR spectroscopy has wide use and applicability in the analysis of molecules important in the pharmaceutical, polymer, and chemical industries. FTIR analysis is used in both industry and academic laboratories to understand the molecular structure of materials and the kinetics, mechanism, and pathways in chemical reactions and catalytic cycles. FTIR spectroscopy ensures that intermediate compounds, raw materials, and final products are within specification.

  • Filter or AOTF

The Acousto-optic Tunable Filter (AOTF) is an electro-optical device that functions as an electronically tunable excitation filter to simultaneously modulate the intensity and wavelength of multiple laser lines from one or more sources. It serves as a tunable transmissive filter. Additionally, it can accurately and rapidly adjust the wavelength and intensity of the diffracted/filtered light by varying the Radiofrequency (RF) power. A widespread application of AOTF is in multispectral imaging, which allows very rapid scanning, allowing for fast attainment of microscope images with spectral information. It is also used for terrestrial observations with a spectral resolution to monitor plants' status.

  • Raman Spectroscopy

Raman spectroscopy is an analytical technique where scattered light is used to measure the vibrational energy modes. It provides both chemical and structural information and the identification of substances through their characteristic Raman ‘fingerprint’. Raman spectroscopy extracts information through the detection of Raman scattering from the sample. It is used in many different fields; it can be used in any application where microscopic, non-destructive, chemical analysis, and imaging are required. Whether the goal is qualitative or quantitative data, Raman analysis can quickly provide critical information. It can soon characterize the chemical composition and structure, whether solid, liquid, gas, slurry, gel, or powder.

  • Micro-Raman Spectroscopy

Raman micro-spectroscopy is where a Raman micro-spectrometer is used instead of a standard Raman spectrometer. A Raman micro-spectrometer consists of a specially designed Raman spectrometer combined with an optical microscope. This allows the alchemist to acquire Raman spectra of microscopic samples or microscopic areas of larger pieces. The advantage is that fewer models are required, and specific effects may also be enhanced over very localized regions.

  • Probe-based Raman Spectroscopy

Probe-based Raman spectroscopy is a development of the technique that allows for optimal signal collection using fiber optics in the laboratory and restricted spaces or hostile environments. It perfectly illustrates how fiber optics are combined with other optical components to obtain a flexible and straightforward measurement.

  • FT-Raman Spectroscopy

The FT-Raman spectroscopy is a Raman configuration designed to collect fluorescence-free and wavelength-stable measurements from a wide range of samples, spanning from crystals to biological tissues. Fourier transform Raman spectroscopy is intended to eliminate the fluorescence problem encountered in conventional Raman spectroscopy. The most important advantage of this technique is reducing the fluorescence effect because of working in a near-IR (NIR) higher frequency region


Process Analytical Technology (PAT) is defined as a mechanism to design, analyse, and control pharmaceutical manufacturing processes through the measurement of critical process parameters that affect critical quality attributes of an Active Pharmaceutical Ingredient (API). PAT allows effective monitoring of reaction paths, and hence leads to a better understanding of the process and development of a more vigorous and safe process.

NIR and Raman Spectroscopy Market By Application

  • Pharmaceutical Applications

Infrared spectroscopy is an adaptable method for the determination of fingerprinting and identification of pharmaceutical compounds and functional groups within molecules. It measures energy absorption across the infrared frequency range. Solid, liquid, and gas pharmaceutical samples can be analyzed by infrared spectroscopy. The Fourier Transform Infrared (FTIR) spectroscopic method, where an interferometer is used in place of a monochromator, allows for immediate analysis across the infrared frequency range. Due partly to its speed and sensitivity, FTIR has become the standard of pharmaceutical infrared spectroscopy analysis. Pharmaceutical applications of using FTIR instrumentation include evaluating raw material and final product analyses before market release and inspection.

  • Biotechnology & Biopharmaceutical Applications

Biopharmaceuticals have transformed the field of medicine in the types of active ingredient molecules and treatable indications. Adopting quality by design and Process Analytical Technology (PAT) frameworks has helped the biopharmaceutical field realize consistent process intensification, product quality, and real-time control. As part of the PAT strategy, Raman spectroscopy offers many benefits and is used successfully in bioprocessing, from single-cell analysis to cGMP process control.

  • Food & Beverage Testing

NIR helps measure fat, moisture, protein, and carbohydrate content in various foods. The most particular advantage is its ability to simultaneously determine several components in a food sample within a short time. Fluorescence spectroscopy plays a significant role in food analysis. It is used to determine, quantify, identify, and classify different food components, additives, contaminants, and adulterants. Liquids can be measured more quickly by the NIR method for moisture, fat, protein, free fatty acids, density, ethanol, solids, organic acids, carbohydrate profile, and other constituents. Near-infrared spectroscopy is a solution that helps companies optimize their production process and guarantee products are meeting specifications.

  • Environment Testing

Surface-enhanced Raman spectroscopy (SERS) is a valuable analytical tool with wide applications in environmental contaminant monitoring. Raman spectroscopy is applied to quality control of agricultural products with higher frequency and can also be used to refine regulatory criteria for both agricultural and environmental monitoring. Raman is integrated into handheld surface-enhanced Raman spectroscopy (SERS) detectors to unmanned aerial vehicles to monitor the gamut from genetic variation to soil and water content.

  • Academic Research

NIR helps research and develop different medicines produced by biotechnology companies. As a process analytical technology, it can rapidly measure the Critical Material Attributes (CMAs) in real-time, nondestructively, and noncontact during manufacturing processes. Fourier Transform Infrared (FTIR) spectroscopy is an analytical methodology used in industry and academic research laboratories to understand the structure of individual molecules and the composition of molecular mixtures.

  • Others

Astronomical spectroscopy is the study of astronomy using spectroscopy techniques to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared, and radio waves that radiate from stars and other celestial objects. It is used to measure three major bands of radiation in the electromagnetic spectrum, namely, radio waves, visible light, and X-rays. Raman spectrometers have been intended for the exploration of a varied range of extraterrestrial targets including asteroids, Mars, Europa, Venus, and the Moon.

NIR and Raman Spectroscopy Market Regional Analysis

The global NIR and Raman spectroscopy market has been segmented, on the basis of region, into North America, Europe, Asia Pacific, and Rest of the World.

North America

The NIR and Raman spectroscopy market growth in North America is attributed to the high prevalence of various chronic diseases, including cancer, diabetes & cardiovascular disorders, and rising healthcare expenditure. The American Cancer Society estimated that 1.9 million new cancer cases would be diagnosed and 609,360 cancer-related deaths in 2022 in the US. Similarly, according to the data published by World Health Organization (WHO), in 2020, 2,281,685 new cancer cases were registered in the US 2020. On the other hand, Canada accounted for 274,364 new cancer cases in 2020. Raman and NIR spectroscopy are widely used in Process Analytical Technology (PAT) applications as these techniques are non-destructive analytical techniques that are capable of analyzing materials in their current state without sample preparation (without dissolving the materials). Near-infrared spectroscopy has gained significant attention in the region as a simple, fast, portable, non-invasive, and inexpensive method for functional diagnosis and therapeutic monitoring of cancer diseases.


The increasing prevalence of chronic diseases, rising geriatric population, and NIR and Raman spectroscopy technological advancements drive NIR and Raman spectroscopy market growth. An article published by Population Reference Bureau (PRB) in 2019 stated that Asia and Europe are the home to the world’s oldest populations, aged 65 and above. Japan (28%) registered the highest geriatric population, followed by Italy (23%), Finland, Portugal & Greece (22%), and China (12%). In addition, the countries in the southern European region, including Croatia, Malta, Portugal, Greece, Italy, Slovenia, Serbia, and Spain, accounted for 21% of the population aged 65 and above.

NIR and Raman Spectroscopy Market Competitive Landscape

The structural composition and distribution of medicinal drugs are studied using spectroscopy. Near-infrared (NIR) and Raman Process Analytical Technology (PAT) provide numerous advantages to pharmaceutical firms. In the pharmaceutical industry, Raman PAT spectroscopy can be used for various tests, including verification of raw materials, monitoring counterfeit drugs, product shelf life, process monitoring of drug production, monitoring of quality control of products, and providing additional detail into a variety of issues. The NIR and Raman spectroscopy market is expanding due to increased healthcare focus on drug discovery, increasing acceptance of NIR and Raman PAT spectroscopy in clinical applications, and rising demand for cloud-based spectroscopy. Surgical operations are becoming more common worldwide as the prevalence and incidence of diseases like cancer, cardiovascular disease, neurovascular disease, and gastrointestinal disease rise

NIR and Raman Spectroscopy Market Key Players

The prominent players in the global NIR and Raman spectroscopy market are Thermo Fisher Scientific Inc. (US), Bruker (US), PerkinElmer Inc. (US), Agilent Technologies, Inc. (US), JASCO (Spain), Shimadzu Corporation (Japan), Danaher (US), Merck KGaA (Germany), ABB (Sweden), and Horiba, ltd (Japan).

NIR and Raman Spectroscopy Market Recent Developments

  • In April 2022, Thermo Fisher Scientific, Inc. introduced a Raman spectroscopic analyser, the Thermo Scientific Ramina Process Analyzer. This is intended to simplify Raman spectroscopy measurements and promote user accessibility. Customers can generate real-time data whenever and wherever they want it. This contributes to the market's expansion.

  • In April 2022, Bruker acquired Optimal Industrial Automation and Technologies (UK), a leader in pharma and biopharma Process Analytical Technology (PAT). The Optimal biopharma tools and automation capabilities supplement Bruker's market-leading and distinctive PAT analytical solutions.

  • In June 2021, Shimadzu and Horiba, Ltd. (Japan) release LC-Raman system merging separating, and visualizing technologies offers new value for R&D applications in a wide variety of fields.

NIR and Raman Spectroscopy Market Report Overview

The study covers the existing short-term and long-term market effects, helping decision-makers draft short-term and long-term plans for businesses by region. The report covers major regions of North America, Europe, Asia-Pacific, and Rest of the World. The report analyzes NIR and Raman spectroscopy market drivers, restraints, opportunities, Value Chain Analysis, Porter's Five Forces, and COVID-19 Impact.

NIR and Raman Spectroscopy Market Segmentation

NIR and Raman Spectroscopy Market, by Product

  • Near-infrared Spectroscopy

    • Scanning

    • Fourier-transform

    • Filter or AOTF

  • Raman Spectroscopy

    • Micro-Raman Spectroscopy

    • Probe-based Raman Spectroscopy

    • FT-Raman Spectroscopy

NIR and Raman Spectroscopy Market, by Application

  • Pharmaceutical Applications

  • Biotechnology & Biopharmaceutical Applications

  • Food & Beverage Testing

  • Environment Testing

  • Academic Research

  • Others        

NIR and Raman Spectroscopy Market, by Region

  • North America

    • US

    • Canada

  • Europe

    • Germany

    • France

    • UK

    • Italy

    • Spain

    • Rest of Europe

  • Asia-Pacific

    • China

    • Japan

    • India

    • Australia

    • South Korea

    • Rest of Asia-Pacific

  • Rest of the World

    • Middle East

    • Africa

    • Latin America

Leading companies partner with us for data-driven Insights
client_1 client_2 client_3 client_4 client_5 client_6 client_7 client_8 client_9 client_10
Kindly complete the form below to receive a free sample of this Report
Please fill in Business Email for Quick Response

We do not share your information with anyone. However, we may send you emails based on your report interest from time to time. You may contact us at any time to opt-out.

Purchase Option
Single User $ 4,950
Multiuser License $ 5,950
Enterprise User $ 7,250
Compare Licenses
Tailored for You
  • Dedicated Research on any specifics segment or region.
  • Focused Research on specific players in the market.
  • Custom Report based only on your requirements.
  • Flexibility to add or subtract any chapter in the study.
  • Historic data from 2014 and forecasts outlook till 2040.
  • Flexibility of providing data/insights in formats (PDF, PPT, Excel).
  • Provide cross segmentation in applicable scenario/markets.