Certified Global Research Member
Isomar fd.webp Wcrc 57.webp
Key Questions Answered
  • Global Market Outlook
  • In-depth analysis of global and regional trends
  • Analyze and identify the major players in the market, their market share, key developments, etc.
  • To understand the capability of the major players based on products offered, financials, and strategies.
  • Identify disrupting products, companies, and trends.
  • To identify opportunities in the market.
  • Analyze the key challenges in the market.
  • Analyze the regional penetration of players, products, and services in the market.
  • Comparison of major players’ financial performance.
  • Evaluate strategies adopted by major players.
  • Recommendations
Why Choose Market Research Future?
  • Vigorous research methodologies for specific market.
  • Knowledge partners across the globe
  • Large network of partner consultants.
  • Ever-increasing/ Escalating data base with quarterly monitoring of various markets
  • Trusted by fortune 500 companies/startups/ universities/organizations
  • Large database of 5000+ markets reports.
  • Effective and prompt pre- and post-sales support.

Energy Storage System ESS Battery Management System BMS Market Size

ID: MRFR//11048-CR | 128 Pages | Author: Shubhendra Anand| November 2023

The ESS BMS market endures several dynamics and growth issues that contribute to its progress as well as influence the nature of the industry. Broken down to one of the pivotal ones is mass implementation of renewable energy sources with further development the EV infrastructure. Because of the global transition towards green energy, the requirement for highly reliable systems using energy storage units powered by advanced BMS has increased. ESS-BMS is an important player in ensuring that the performance, safety, and lifespan of batteries are at peak levels given its potential application on renewable energy storage systems as well as a crucial component in electric vehicle applications. Government policies & regulations are the main actors in this market platform. Many nations are introducing the policy of promoting the use of renewable energy and electric vehicles, thereby providing support to the burgeoning market for energy storage technologies. Governmental frameworks mostly encompass safety, energy-efficiency and reliability standards that are required to implement the modernized battery management systems within the setting up of energy storage installations. This is because these regulations become critical to the manufacturers keen on participating in ESS-BMS market as they must ensure that their products meet the sustainability targets. Changes in battery technology over this past decade have also led to major actions on the ESS-BMS market. Through continuous performance by as well as research and design, coefficients such as nitric acid solutions are made together with decent battery electrochemistry in addition to energy storing technologies.


The implementation of AI and machine learning into battery management systems increases their efficiency in detecting, predicting issues, managing faults, reducing malfunctions occurrences, improving the ability to compare performance scenarios related to a specific energy source with alterations due to temporal variations or other causes. As for these significant technological novelties, they do not only lead to better integration of energy storage systems’ performance, but also prompt the need for advanced BMS solutions. Specific demands, which are being industry-oriented and directed towards the needs of individual sectors, play a significant part in defining the ESS-BMS market dynamics. Each industry has energy storage requirements – for example, the residential one differs from the commercial or industrial ones. For instance, in case of residential estates, people are likely to focus on cost-effective and unity power when an industry they may demand high powers among the significant basic requirements. Differentiation of the ESS-BMS market’s manufacturers lies in avoiding the standard approach due to diverse needs, and offering solutions that are flexible and assignable for various energy storage applications. Epigenetic factor also dictates the development of ESS market- BMS. The market is made to grow by the increased investments in renewable energy projects and electrification of transport, which leads to carbon dioxide emission curtailment. Both governments and businesses see the economic and environmental advantages offered by energy storage systems, making them highly solicited before integrated BMSs technologies. Nevertheless, although market fluctuations may make a short-term difference because of delays or projects dissolutions due to low budget of some energy storage initiatives.

Global Energy Storage System (ESS) Battery Management System (BMS) Market Overview


Energy Storage System (ESS) Battery Management System (BMS) Market Size was valued at USD 886.00 Million in 2022 and the volume was valued at 36,80,069 Units. The Energy Storage System (ESS) Battery Management System (BMS) market industry is projected to grow from USD 1,041.1 Million in 2023 and volume in 43,22,628 Units to USD 397.9 Million by 2032, exhibiting a compound annual growth rate (CAGR) of 18.2% during the forecast period (2023 - 2032). Energy Storage System (ESS) Battery Management System (BMS), rise in demand for energy storage systems for transportation & electric Vehicles (EVs) and increasing demand for grid energy storage systems owing to ongoing grid modernization are the key market drivers boosting the growth of the Energy Storage System (ESS) Battery Management System (BMS) market.  


FIGURE 1: ENERGY STORAGE SYSTEM (ESS) BATTERY MANAGEMENT SYSTEM (BMS) MARKET SIZE 2018-2032 (USD MILLION)


ENERGY STORAGE SYSTEM (ESS) BATTERY MANAGEMENT SYSTEM (BMS) MARKET SIZE 2018-2032


Source: Secondary Research, Primary Research, MRFR Database, and Analyst Review


Energy Storage System (ESS) Battery Management System (BMS) Market Trends




  • Rise in demand for Energy Storage systems for Transportation & Electric Vehicles (EVs).




The number of electric vehicles (EVs) on the streets and on the electric grid is steadily increasing. These vehicles include plug-in electric vehicles (EVs) that are powered exclusively by electricity and plug-in hybrid electric vehicles (PHEVs) that are powered by electricity and fossil fuels simultaneously. Even though most of these vehicles' charging takes place at night and on weekends, when electricity prices and values are low, and when passenger vehicles aren't needed or used, some EVs will have to charge during the day and even during peak power days, when the grid is already providing the maximum power available. The unpredictable daily and seasonal variations in demand for electrical energy can be tackled by introducing the energy storage systems (ESSs) and hence mitigating the extra GHG emission in the atmosphere.


In cases where EV charging occurs on parts of the grid that lack sufficient capacity "headroom", two basic options are available. To increase capacity, the utility can add generation, transmission, and distribution (GT&D) infrastructure. In addition, distributed energy resources (DERs) can be installed, including distributed generation and storage. It is necessary to install DER capacity electrically downstream from congestion points to meet the added on-peak demand locally in order to achieve the desired effect. However, electric vehicles can also generate electricity on their own. As EVs are increasingly plugged into the grid, their batteries can provide many of the grid services that stationary energy storage systems can provide. As more EVs are plugged into the grid, this capability is becoming increasingly important as they are actively managed to reduce their impact on the electric grid when charging.


It is important to consider the impact of the growing EV market on the electricity grid. With increasing use of electricity, EVs will generate more power, resulting in more fuel use and emissions from generators. The electric grid will require additional capacity during peak demand (times when the most power is drawn from the grid) in order to make, transmit, and deliver the additional energy. In order to provide the power that EVs require, the electric grid needs to generate additional power. Transmission and distribution (T&D) systems need to be upgraded and enhanced by grid operators as well, mainly to deliver more electricity during peak times on the grid. Electric vehicles are expected to increase in popularity, and utilities, regulators, policymakers, and legislators are working on ways to accommodate the extra demand that charging during peak times will add to non-EV demand.


It would be advantageous to add distributed electricity storage at or near EV charging stations instead of relying on conventional T&D. This reduces the demand for T&D capacity on-peak to service the EV charging portion of the peak demand. Additionally, the storage is charged by low-cost, off-peak energy at the time when fuel use and air emissions are lowest. With a smarter, more responsive grid backed up by energy storage, fast EV charging can be accommodated during peak demand periods with better monitoring, communication, control, and computational capabilities. There are some notable synergies between using energy storage to charge EVs and obtaining other benefits. An integrated strategy for integrating distributed photovoltaics and providing very reliable electric service, for example, could include distributed storage for EV charging. The utilities would also be able to reduce their overall costs of service if they charged at night when electricity demand is low. When there is a shortage of electricity, or a national emergency, EVs that are connected to the grid can be used as a power supply in place of or in conjunction with electricity storage. V2G is the term used to describe this application. With more electric vehicles being connected to charging stations in homes and businesses, electric vehicles may become a non-trivial electric supply resource during emergency situations with the grid. When the number of EVs rises substantially, the price of off-peak energy may increase enough to reduce the benefits of some grid-related storage, such as energy time-shifting and TOU energy cost management. In addition to savings in battery and battery system prices, the proliferation of EVs could lead to synergies in system management and grid integration (e.g., monitoring, control, communications, interconnection, and computer algorithms). In addition to complementing each other, EVs and storage may also drive more competition in the Energy Storage Systems Market. With EV charging becoming more common during on-peak hours, Energy Storage Systems will play a vital role for the growth of the market during the forecasted period.


Energy Storage System (ESS) Battery Management System (BMS) Market Platform Segment Insights


Energy Storage System (ESS) Battery Management System (BMS) Battery Type Insights


Based on souring type, the Energy Storage System (ESS) Battery Management System (BMS) Market segmentation includes lithium-ion based, advance lead-acid, nickel-based, and flow batteries. The lithium-ion based held the majority share in 2022, contributing around ~83% to the market revenue. Lithium-ion technology-based Energy Storage Systems (ESS) offer the capability to store electricity on-site, reducing the dependence on fossil fuels and enabling future utilization or sale of the stored power. The prevalent use of lithium-ion batteries, particularly lithium-iron phosphate (LFP) and nickel manganese cobalt (NMC) variants, dominates the current landscape of ESS installations. These systems provide economic benefits by allowing stored electricity to be used when needed, thereby reducing peak-hour rates and demand charges, as well as providing backup power during outages. However, it is important for building owners and occupants to be aware of the fire and explosion risks associated with these technologies, as they are inherent to ESS using lithium-ion batteries. Despite the advantages of this sustainable power source, safety considerations should be taken into account when considering the implementation of ESS utilizing lithium-ion technologies.


Energy Storage System (ESS) Battery Management System (BMS) Topology Insights


Based on the Topology, the Energy Storage System (ESS) Battery Management System (BMS) Market segmentation is Centralized, Modular, and Distributed. Testing services dominated the market in 2022. Centralized Energy Storage Systems refer to large-scale energy storage facilities that are typically connected to the power grid. These systems are designed to store a significant amount of electrical energy and release it when needed to support grid stability, balance supply and demand, and enhance the overall reliability and efficiency of the power system. Centralized energy storage systems can employ various technologies such as lithium-ion batteries, pumped hydro storage, compressed air energy storage, and advanced flow batteries. These systems typically have a higher energy capacity and longer discharge duration compared to distributed energy storage systems.


One of the key advantages of centralized energy storage systems is their ability to provide a centralized and coordinated approach to energy storage, allowing for more efficient utilization of resources and better integration with the grid infrastructure. They can also help in optimizing renewable energy generation by storing excess electricity during periods of low demand or high renewable energy generation and releasing it during peak demand periods or when renewable energy generation is low. However, the deployment of centralized energy storage systems requires careful planning, considering factors such as site selection, grid connection, environmental impact, and economic feasibility. Additionally, the upfront capital costs of these systems can be significant, although the declining costs of energy storage technologies are making them more economically viable.


FIGURE 2: ENERGY STORAGE SYSTEM (ESS) BATTERY MANAGEMENT SYSTEM (BMS) MARKET, BY TOPOLOGY, 2022 VS 2032 (USD MILLION)


ENERGY STORAGE SYSTEM (ESS) BATTERY MANAGEMENT SYSTEM (BMS) MARKET, BY TOPOLOGY, 2022 VS 2032


Source: Secondary Research, Primary Research, MRFR Database, and Analyst Review


Energy Storage System (ESS) Battery Management System (BMS) Regional Insights


By Region, the study provides market insights into North America, Europe, Asia-Pacific, and the Rest of the World. The Asia Pacific Energy Storage System (ESS) Battery Management System (BMS) market accounted for ~44.8% in 2022. The Asia Pacific region holds immense potential for the energy storage systems market. With its rapidly growing population, increasing energy demand, and focus on renewable energy deployment, the region presents numerous opportunities for the adoption of energy storage technologies. Several countries in the Asia Pacific, such as China, Japan, South Korea, and Australia, have ambitious renewable energy targets and are actively investing in energy storage infrastructure to support the integration of renewable energy sources into their grids. China, in particular, has emerged as a global leader in both renewable energy and energy storage deployment, with significant investments in battery manufacturing and large-scale energy storage projects.


FIGURE 3: ENERGY STORAGE SYSTEM (ESS) BATTERY MANAGEMENT SYSTEM (BMS) MARKET SIZE BY REGION 2022 VS 2032


ENERGY STORAGE SYSTEM (ESS) BATTERY MANAGEMENT SYSTEM (BMS) MARKET SIZE BY REGION 2022 VS 2032


Source: Secondary Research, Primary Research, MRFR Database, and Analyst Review


Further, the major countries studied in the market report are the U.S., Canada, Germany, France, the UK, Italy, Spain, China, Japan, India, Australia, South Korea, and Brazil.


Europe market accounts for the second-largest market share. Europe is witnessing a rapid transition towards renewable energy sources and an increasing focus on achieving decarbonization and energy sustainability goals. Europe has been at the forefront of renewable energy adoption and has implemented ambitious targets for renewable energy generation. The European Union's Clean Energy Package, along with various national policies and regulations, is driving the deployment of energy storage systems across the region. In order to meet its renewable energy targets, the European Union is expected to need 187 gigawatts of energy storage capacity by 2030. For 2050, energy storage requirements in the region should add up to 600 gigawatts. Several countries, including Germany, the United Kingdom, France, and Italy, have set aggressive targets for energy storage deployment and are implementing favorable regulatory frameworks to support market growth.


The growing penetration of intermittent renewable energy sources, such as wind and solar power, has created a need for energy storage systems to ensure grid stability and optimize the utilization of renewable energy. Energy storage technologies like lithium-ion batteries, flow batteries, and advanced lead-acid batteries are gaining traction in the European market, offering solutions for both utility-scale and distributed energy storage applications.


The North America Energy Storage System (ESS) Battery Management System (BMS) Market is expected to grow at the fastest CAGR between 2022 and 2032. North America is witnessing significant growth in renewable energy deployment, grid modernization initiatives, and the adoption of electric vehicles, which are driving the demand for energy storage systems. North America has been at the forefront of renewable energy integration, with countries like the United States and Canada making substantial investments in clean energy infrastructure. The United States, in particular, has witnessed a surge in energy storage deployment due to supportive policies, incentives, and the need to enhance grid reliability and resilience. Several states, including California, New York, and Massachusetts, have set aggressive energy storage targets and implemented favorable regulatory frameworks to accelerate adoption.


Energy Storage System (ESS) Battery Management System (BMS) Key Market Players & Competitive Insights


With a strong presence across different verticals and geographies, the Energy Storage System (ESS) Battery Management System (BMS) market is highly competitive and dominated by established, pure-play vendors. Over 30 vendors cater to this market, and they continually innovate their solutions to meet the evolving needs of businesses by adopting new technologies. These vendors have a robust geographic footprint and partner ecosystem to cater to diverse customer segments. The Energy Storage System (ESS) Battery Management System (BMS) market is highly competitive, with many vendors offering similar products and services.


The major players in the market include SGS Group, Bureau Veritas, DEKRA, Intertek Group Plc, TUV SUD, and others. SGS SA develops end-to-end supply chain solutions for agriculture & food, construction, industrial manufacturing, and other applications. The company also focuses on collaborations and partnerships to expand its presence in the market. It also invests heavily in R&D.


Bureau Veritas' business strategy revolves around five main aspects, which are increasing the market coverage through key growth initiatives, continuing to carry out an efficient digital operational model, maintaining the equilibrium in worldwide presence across Europe, Middle East, Africa, Asia-Pacific, and the Americas, continuing to play an active role in the market consolidation, and strengthening the ties with multinational companies.


The Energy Storage System (ESS) Battery Management System (BMS) Market is consolidated, increasing competition, acquisitions, mergers, and other strategic market developments and decisions to improve operational effectiveness.


Key Companies in the Energy Storage System (ESS) Battery Management System (BMS) market include



  • Infineon Technologies AG

  • Nuvation Energy

  • MG Energy Systems B.V.

  • NXP Semiconductors

  • OSM LiFePo4 Technology

  • Powin Energy Corporation

  • Panasonic Industry Co. Ltd.

  • Saft

  • ABB

  • Desay Corporation

  • Emerson Electric CO.

  • Mitshubishi Heavy Industries Ltd.

  • Texas Instruments

  • Honeywell International

  • TE Connectivity

  • WEG 


Energy Storage System (ESS) Battery Management System (BMS) Industry Developments



  • In May 2023, AMI AC Renewables signed a memorandum of understanding (MOU) with Honeywell to collaborate on a battery energy storage system pilot project in Vietnam, through its subsidiary, AMI Khanh Hoa. The pilot project, which is co-funded by a USD 3 million from the US Mission, demonstrated how energy storage may assist Vietnam integrate more renewable energy into its power grid in order to reach ambitious climate targets.

  • In May 2023, TE Connectivity partnered with the Start-up Hub of the Bangalore Chamber of Industry and Commerce (BCIC) to create its first accelerator program in India. The program intended to foster and develop start-ups in the energy and electrification, smart cities, and IoT areas by providing mentorship, resources, and access to a worldwide network.


Energy Storage System (ESS) Battery Management System (BMS) Market Segmentation


Energy Storage System (ESS) Battery Management System (BMS) Battery Type Outlook



  • Lithium-ion Based

  • Advance Lead-Acid

  • Nickel-Based

  • Flow Batteries


Energy Storage System (ESS) Battery Management System (BMS) Topology Outlook



  • Centralized

  • Modular

  • Distributed


Energy Storage System (ESS) Battery Management System (BMS) Regional Outlook



  • North America

    • US

    • Canada



  • Europe

    • Germany

    • France

    • UK

    • Italy

    • Spain

    • Rest of Europe



  • Asia-Pacific

    • China

    • Japan

    • India

    • Australia

    • South Korea

    • Australia

    • Rest of Asia-Pacific



  • Rest of the World

    • Middle East

    • Africa

    • Latin America



Leading companies partner with us for data-driven Insights
client_1 client_2 client_3 client_4 client_5 client_6 client_7 client_8 client_9 client_10
Kindly complete the form below to receive a free sample of this Report
Please fill in Business Email for Quick Response

We do not share your information with anyone. However, we may send you emails based on your report interest from time to time. You may contact us at any time to opt-out.

Purchase Option
Single User $ 4,950
Multiuser License $ 5,950
Enterprise User $ 7,250
Compare Licenses
Tailored for You
  • Dedicated Research on any specifics segment or region.
  • Focused Research on specific players in the market.
  • Custom Report based only on your requirements.
  • Flexibility to add or subtract any chapter in the study.
  • Historic data from 2014 and forecasts outlook till 2040.
  • Flexibility of providing data/insights in formats (PDF, PPT, Excel).
  • Provide cross segmentation in applicable scenario/markets.