Global Semiconductor Packaging Material Market Research Report - Forecast to 2023

Global Semiconductor Packaging Material Market Report: By Type (Organic Substrates, Bonding Wires, Encapsulation Resins, Ceramic Packages, Solder Balls, Wafer Level Packaging Dielectrics And Others), Technology (Grid Array, Small Outline Package, Dual Flat No-Leads, Quad Flat Package, Dual In-Line Package And Others), And Region - Global Forecast To 2023

Market Scenario:

Semiconductor packaging materials are used in the final stage of semiconductor device fabrication and are used to safeguard devices from deterioration and external influence. The global semiconductor packaging material has perceived a noteworthy growth over the past few years owing to the growing demand for mobile phones, tablets, and other communication devices. Furthermore, the market is projected to keep on increasing during the forecast period 2017-2023. The semiconductor packaging materials are major platform to the success of the semiconductor business across the sphere, and the shifting of the customer towards modern electronics are propelling the semiconductor packaging material market. The vital factor driving the market is the continuously growing mobile industry and technological advancements. Moreover, the increased demand for mobile and communication devices have further augmented the semiconductor packaging material market.

The increasing implementation of integrated circuits in various electronic devices is prompting the demand for semiconductor packaging material. Different types of material are used for the semiconductor packaging including organic substrates, bonding wires, encapsulation resins, ceramic packages, solder balls, wafer level packaging dielectrics, and others. Rapid advancements in the technology are benefitting superior acceptance of these packaging materials.

Increasing miniaturization of the electronic devices across the world is one of the major driver of the market. Additionally, Consumer’s preferences across the world gaining popularity over portable and cost-effective devices. Thus, the major manufacturers are concentrating on creating a compact and lightweight electronic device to maintain the key position in the market. Innovative packaging technologies such as SIP, flip-chip, and WLP are expected to drive the expansion of new materials solutions. This technology ensures the high density and improved performance of the materials in miniaturized packages. Furthermore, the increasing demand for compact devices across various sectors such as automotive industry, telecommunication, and electronic industry will also play a vital role in boosting the market growth during the forecast period. The Asia Pacific market is native to the major electronic manufacturing giants in economies such as China, Japan, South Korea, and Taiwan. The market is projected to practice vigorous growth due to augmented demand for smart devices and additional electronic goods over the forecast period.

Global semiconductor packaging material market is segmented based on type, technology, and region. Based on the type, the market is segmented into organic substrates, bonding wires, encapsulation resins, ceramic packages, solder balls, wafer level packaging dielectrics, and others. Among these, the organic substrates are projected to dominate the semiconductor packaging material market over the review period 2017-2023 because these materials form the base layers of single semiconductor devices and chips on which additional layers are dumped to complete the circuit. They are progressively favored over other
resources like lead frames as the industry is diminishing the use of lead. Based on the technology, the market is segmented into grid array, small outline package, dual flat no-leads, quad flat package, dual in-line package, and others. Grid array dominated the market in 2016 and is projected to be the fastest-growing technology. The wide application of grid array across all major semiconductor packaging type is creating a fruitful semiconductor packaging material market across the globe.

The semiconductor packaging material industry is extremely fragmented with a number of multinational, local, and regional players. The Asia Pacific manufacturers are holding the dominant position in the market. Local players are levitating the stakes by catering innovative offerings at lower prices than the international vendors. The market is also expected to have high expansion activities by multinationals and well-established companies.

The global semiconductor packaging material market is expected to grow at a CAGR of 5% during the forecast period.

Market Segmentation:

![Diagram of market segmentation]

Global Semiconductor Packaging Material Market

The unremitting research and development exertions by major players in making the electronic packaging materials extremely dependable to intensify the growth of the global semiconductor packaging materials. The increasing demand for consumer electronics is supplementing the market growth. The rising consciousness about the practicality of electronic packaging materials in numerous applications is also contributing a significant boost to the growth of the market. However, fluctuating prices of the raw materials are upsetting the growth of the market. On the basis of the region, the global semiconductor packaging material market is segmented into North America, Asia Pacific, Europe, and Rest of the World. The Asia Pacific currently holds the pole position in the semiconductor packaging material market owing to fast technological growths and the developing demand for progressive electronic packaging materials from the end-users. Furthermore, the large investments in electronics applications along with low-cost manufacturing, low workforce cost, and easy convenience of the raw materials are subsidizing to the evolution of the region.

Key Players

The key players in the global semiconductor packaging material market are Henkel AG & Company, KGaA (Germany), Hitachi Chemical Company, Ltd. (Japan), Sumitomo Chemical Co., Ltd. (Japan), Kyocera Chemical Corporation (Japan), Mitsui High-tec, Inc. (Japan), Toray Industries, Inc. (Japan), Alent plc (U.K.), LG Chem (South Korea), BASF SE (Germany), Tanaka Kikinzoku Group (Japan), E. I. du Pont de Nemours and Company (U.S.), Honeywell International Inc. (U.S.), Toppan Printing Co., Ltd. (Japan), Nippon Micrometal Corporation (Japan), and Alpha Advanced Materials (U.S.)

Contents:

- Table of Contents
- 1 Executive Summary
- 2 Scope of the Report
 - 2.1 Market Definition
2.2 Scope of the Study
2.2.1 Definition
2.2.2 Research Objective
2.2.3 Assumptions
2.2.4 Limitations
2.3 Research Type
2.3.1 Primary Research
2.3.2 Secondary Research
2.4 Market size Estimation
2.5 Forecast Model

3 Market Landscape
3.1 Porter’s Five Forces Analysis
3.1.1 Threat of New Entrants
3.1.2 Bargaining power of buyers
3.1.3 Threat of substitutes
3.1.4 Segment rivalry
3.1.5 Bargaining Power of Buyers
3.2 Value Chain/Supply Chain Analysis

4 Market Dynamics
4.1 Introduction
4.2 Market Drivers
4.3 Market Restraints
4.4 Market Opportunities
4.5 Market Trends

5 Global Semiconductor Packaging Material Market, By Type
5.1 Introduction
5.2 Organic Substrates
5.2.1 Market Estimates & Forecast, 2017-2023
5.2.2 Market Estimates & Forecast by Region, 2017-2023
5.3 Bonding Wires
5.3.1 Market Estimates & Forecast, 2017-2023
5.3.2 Market Estimates & Forecast by Region, 2017-2023
5.4 Encapsulation Resins
5.4.1 Market Estimates & Forecast, 2017-2023
5.4.2 Market Estimates & Forecast by Region, 2017-2023
5.5 Ceramic Packages
5.5.1 Market Estimates & Forecast, 2017-2023
5.5.2 Market Estimates & Forecast by Region, 2017-2023
5.6 Solder Balls
5.6.1 Market Estimates & Forecast, 2017-2023
5.6.2 Market Estimates & Forecast by Region, 2017-2023
5.7 Wafer Level Packaging Dielectrics
5.7.1 Market Estimates & Forecast, 2017-2023
5.7.2 Market Estimates & Forecast by Region, 2017-2023
5.8 Others
5.8.1 Market Estimates & Forecast, 2017-2023
5.8.2 Market Estimates & Forecast by Region, 2017-2023

6 Global Semiconductor Packaging Material Market, By Technology
6.1 Introduction
6.2 Grid Array
6.2.1 Market Estimates & Forecast, 2017-2023
6.2.2 Market Estimates & Forecast by Region, 2017-2023
6.3 Small Outline Package
6.3.1 Market Estimates & Forecast, 2017-2023
6.3.2 Market Estimates & Forecast by Region, 2017-2023
6.4 Dual Flat No-Leads
6.4.1 Market Estimates & Forecast, 2017-2023
6.4.2 Market Estimates & Forecast by Region, 2017-2023
6.5 Quad Flat Package
6.5.1 Market Estimates & Forecast, 2017-2023
6.5.2 Market Estimates & Forecast by Region, 2017-2023
6.6 Dual In-Line Package
6.6.1 Market Estimates & Forecast, 2017-2023
6.6.2 Market Estimates & Forecast by Region, 2017-2023
6.7 Others
6.7.1 Market Estimates & Forecast, 2017-2023
6.7.2 Market Estimates & Forecast by Region, 2017-2023

7 Global Semiconductor Packaging Material Market, By Region
7.1 Introduction
7.2 North America
7.2.1 Market Estimates & Forecast, 2017-2023
7.2.2 Market Estimates & Forecast by Type, 2017-2023
7.2.3 Market Estimates & Forecast by Technology, 2017-2023
7.2.4 The U.S.
7.2.4.1 Market Estimates & Forecast, 2017-2023
7.2.4.2 Market Estimates & Forecast by Type, 2017-2023
7.2.4.3 Market Estimates & Forecast by Technology, 2017-2023
7.2.5 Canada
7.2.5.1 Market Estimates & Forecast, 2017-2023
7.2.5.2 Market Estimates & Forecast by Type, 2017-2023
7.2.5.3 Market Estimates & Forecast by Technology, 2017-2023
7.3 Europe
7.3.1 Market Estimates & Forecast, 2017-2023
7.3.2 Market Estimates & Forecast by Type, 2017-2023
7.3.3 Market Estimates & Forecast by Technology, 2017-2023
7.3.4 U.K.
7.3.4.1 Market Estimates & Forecast, 2017-2023
7.3.4.2 Market Estimates & Forecast by Type, 2017-2023
7.3.4.3 Market Estimates & Forecast by Technology, 2017-2023
7.3.5 Germany
7.3.5.1 Market Estimates & Forecast, 2017-2023
7.3.5.2 Market Estimates & Forecast by Type, 2017-2023
9.1 Henkel AG & Company, KGaA
9.1.1 Company Overview
9.1.2 Types/Services Offering
9.1.3 Financial Overview
9.1.4 Key Developments
9.1.5 Strategy
9.1.6 SWOT Analysis
9.2 Hitachi Chemical Company, Ltd.
9.2.1 Company Overview
9.2.2 Types/Services Offering
9.2.3 Financial Overview
9.2.4 Key Developments
9.2.5 Strategy
9.2.6 SWOT Analysis
9.3 Sumitomo Chemical Co., Ltd.
9.3.1 Company Overview
9.3.2 Types/Services Offering
9.3.3 Financial Overview
9.3.4 Key Developments
9.3.5 Strategy
9.3.6 SWOT Analysis
9.4 Kyocera Chemical Corporation
9.4.1 Company Overview
9.4.2 Types/Services Offering
9.4.3 Financial Overview
9.4.4 Key Developments
9.4.5 Strategy
9.4.6 SWOT Analysis
9.5 Mitsui High-tec, Inc.
9.5.1 Company Overview
9.5.2 Types/Services Offering
9.5.3 Financial Overview
9.5.4 Key Developments
9.5.5 Strategy
9.5.6 SWOT Analysis
9.6 Toray Industries, Inc.
9.6.1 Company Overview
9.6.2 Types/Services Offering
9.6.3 Financial Overview
9.6.4 Key Developments
9.6.5 Strategy
9.6.6 SWOT Analysis
9.7 Alent plc
9.7.1 Company Overview
9.7.2 Types/Services Offering
9.7.3 Financial Overview
9.7.4 Key Developments
9.7.5 Strategy
9.14.5 Strategy
9.14.6 SWOT Analysis
9.15 Alpha Advanced Materials
9.15.1 Company Overview
9.15.2 Types/Services Offering
9.15.3 Financial Overview
9.15.4 Key Developments
9.15.5 Strategy
9.15.6 SWOT Analysis

List of Tables
Table 1 Global Semiconductor Packaging Material Market: By Region, 2017-2023
Table 2 North America Semiconductor Packaging Material Market: By Country, 2017-2023
Table 3 Europe Semiconductor Packaging Material Market: By Country, 2017-2023
Table 4 Asia-Pacific Semiconductor Packaging Material Market: By Country, 2017-2023
Table 5 RoW Semiconductor Packaging Material Market: By Country, 2017-2023
Table 6 Global Semiconductor Packaging Material Market, By Type, By Regions, 2017-2023
Table 7 North America Semiconductor Packaging Material Market, By Type, By Country, 2017-2023
Table 8 Europe Semiconductor Packaging Material Market, By Type, By Country, 2017-2023
Table 9 Asia-Pacific Semiconductor Packaging Material Market By Type, By Country, 2017-2023
Table 10 RoW Semiconductor Packaging Material Market By Type, By Country, 2017-2023
Table 11 Global Ambient Food Packaging By Technology Market: By Regions, 2017-2023
Table 12 North America Semiconductor Packaging Material Market By Technology : By Country, 2017-2023
Table 13 Europe Semiconductor Packaging Material Market By Technology : By Country, 2017-2023
Table 14 Asia Pacific Semiconductor Packaging Material Market By Technology : By Country, 2017-2023
Table 15 RoW Semiconductor Packaging Material Market By Technology : By Country, 2017-2023
Table 16 Global Semiconductor Packaging Material Market: By Region, 2017-2023
Table 17 Global Semiconductor Packaging Material Market: By Type, 2017-2023
Table 18 Global Semiconductor Packaging Material Market: By Technology, 2017-2023
Table 19 North America Semiconductor Packaging Material Market, By Country
Table 20 North America Semiconductor Packaging Material Market, By Type
Table 21 North America Semiconductor Packaging Material Market, By Technology
Table 22 Europe: Semiconductor Packaging Material Market, By Country
Table 23 Europe: Semiconductor Packaging Material Market, By Type
Table 24 Europe: Semiconductor Packaging Material Market, By Technology
Table 25 Asia-Pacific: Semiconductor Packaging Material Market, By Country
Table 26 Asia-Pacific: Semiconductor Packaging Material Market, By Type
Table 27 Asia-Pacific: Semiconductor Packaging Material Market, By End-User
Table 28 RoW: Semiconductor Packaging Material Market, By Region
Table 29 RoW Semiconductor Packaging Material Market, By Type
Table 30 RoW Semiconductor Packaging Material Market, By Technology

List of Figures
FIGURE 1 RESEARCH TYPEOF MRFR
FIGURE 2 TOP DOWN & BOTTOM UP APPROACH
FIGURE 3 Market Dynamics
FIGURE 4 impact analysis: market drivers
FIGURE 5 impact analysis: market restraints